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This study investigates the formation process of droplets in a Y-junction microchannel using
two immiscible fluids: water as the continuous fluid and oil as the dispersed phase. We have
examined the influence of the capillary number, flow rate ratio and viscosity ratio between
the two fluids; parameters which determine the length and generation frequency of the
droplets. Numerical simulations have been performed using the software Ansys Fluent with
the interface capture method Volume of Fluid (VOF) for solving the governing equations.
Three different algorithms have been tested for the pressure-velocity coupling: SIMPLE,
SIMPLEC and PISO. The results are quite similar for SIMPLE and SIMPLEC, however
it turned out that PISO is a better algorithm to solve the two-phase flow. Additionally,
another Y-junction is coupled in the initial geometry to observe a symmetric breakup of the
droplets and their formation is explained using the pressure field and the velocity field.

Keywords: microfluidic, Y-junction, two-phase flow, numerical simulation, VOF

1. Introduction

Microfluidics can be defined as science which studies the behaviour of fluids in micro-channels
(dimensions varying from 10µm to 500µm). Micro-channels becomes increasingly used every
day due to a microminiaturization of biomedical devices (Micro-electromechanical system –
MEMS technologies) (Lih and Miao, 2015). Microfluidics have many applications such as: DNA
fabrication, encapsulation of cells, drug delivery and protein crystallization (Dolomite, 2015).
For these applications, it is important to control as well as possible the geometry of the generated
droplets. There are many ways of making droplets depending on the geometry used, as it was
shown and briefly explained by Dolomite (2015).

In this study, we will focus on a segmented flow device. For that, a Y-junction (Fu et al.,
2011, 2014; Cong et al., 2014) is used in order to generate periodic droplets. One continuous
fluid is injected into the first channel and a dispersed fluid is injected into the secondary channel,
both fluids are incompressible and immiscible.

Several parameters such as the viscosity ratio between the two fluids, the flow rate ratio, the
capillary number, the aspect ratio of the geometry, the sizing of the meshing between others, can
affect considerably droplet generation. This study investigates the influence of those parameters
in the formation process by checking for every case the variation in length of generated droplets
and the pressure field. To have a better understanding of the phenomena, a comparison between
the predicted lengths of droplets by scaling proposed by Garstecki et al. (2006) and the numerical
ones will be made. Tarchichi et al. (2013) showed the influence of the capillary number (Ca).
Depending on its value, 3 regimes of droplets can occur: the squeezing regime for low value of Ca,
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the dripping regime as Ca increase and the jetting regime at higher value of Ca. The effects of
the viscosity ratio on the formation of the droplet are discussed in Tice et al. (2004). According
to that reference, droplets are formed when the viscosity of the dispersed fluid is significantly
higher than that of the continuous fluid.

All numerical simulations have been performed using the software Ansys Fluent 15.0 with
the volume-of-fluid (VOF) method. In every case, the continuous phase which is injected in the
main channel is water, and the dispersed phase is oil.

2. Problem description

In this study, we are using a Y-geometry (Fig. 1a) which is similar to that of Liu et al. (2015).
This geometry have two inlets with the same width h. Both extend until they meet in a junction
forming channels with two parallel plates whose distances are the same, 4h. The length of the
main channel is taken to be 36h for the development of periodic emulsions of oil in water. This
geometry is then modified by adding two orthogonal channels at the end of the main channel
(Fig. 1b) (Fu et al., 2011, 2014; Cong et al., 2014); channels which have the same width h/2 and
the same length 10h. In all the work that follows, h = 0.1mm. Water with a viscosity µw of 1 cP
(0.001 Pa·s) is injected at inlet 2 and oil with a viscosity µo of 10 cP (0.01 Pa·s) in inlet 1; both
are moving along their channel until they meet in the junction, named here Y-junction, and
moving forward along the main channel. The density of water ρw and of oil ρo are respectively
1000 kg/m3 and 900 kg/m3. The interfacial tension between water and oil (σw/o), which is an
important parameter for the formation of droplets, is equal to 0.0003 N/m (30 dyn/cm)

Fig. 1. Schematic view, not in scale, of the Y-junction geometry used in this work

3. Mathematical approach of the liquid-liquid flow problem

The volume fraction of water αw and oil αo, both ranging between 0 and 1, determines the
interaction between the two fluids in the oil mobilization process, and is obtained using the
multiphase model Volume of Fluid – VOF developed by Hirt and Nichols (1981). This model
solves mass conservation and momentum equations considering the volume fraction present in
every cell from the physical domain of the problem and for different instants. The proposal
consists in calculating the volume fraction of the less dense phase, oil in this case
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∂

∂t
(αoρo) +∇ · (αoρov) = 0 (3.1)

Considering the presence of two phases, water w and oil o, the sum of the volume fractions
at each point of the domain must be unitary, i.e.

αw + αo = 1 (3.2)

The water volume fraction is obtained directly from Eq. (3.2) as αw = 1 − αo, since the oil
volume fraction is already known from Eq. (3.1).

Density ρwo and viscosity µwo in Equation (3.5), are mixture properties which vary within
the flow domain and are computed by the volume fraction weighted average as

ρwo = αwρw + αoρo µwo = αwµw + αoµo (3.3)

The continuity equation, which describes mass conservation in the whole domain, i.e., in the
water and oil region, where the velocity vector is v, is given by

∇ · v = 0 (3.4)

Similarly, the linear momentum conservation principle is applied in the whole domain

∂

∂t
(ρwov) +∇ · (ρwovv) = −∇p+∇ · (2µwoD) + ρwog + fint (3.5)

where ρwo is the average density, g represents gravity acceleration and D = 0.5[∇v + (∇v)
T]

is the strain rate tensor. The source term fint in momentum equation, added for modeling
water/oil interfacial tension σwo effects on fluid motion, is described by the Continuum Surface
Force (CSF) model proposed by Brackbil et al. (1992) and expressed by

fint = σwo
ρwoκ∇αo
1
2(ρw + ρo)

(3.6)

this term is known in the literature as the Continuum Model Surface Force – CSF, where κ is
the curvature of the interface, ρw is density of water and ρo is density of oil.

The boundary conditions which define the solution domain, are applied as shown in Fig. 2,
where:

(1) In inlet 1, the average velocity of oil Vo is taken to be equal to 0.00009m/s;

(2) In inlet 2, water flows with a velocity Vw of 0.000417m/s;

(3) In the outlet, the gauge pressure is equal to 0Pa;

(4) The interface is applying a force, defined previously by Eq. (3.6); and

(5) Finally, no-slip and zero diffusive mass flux are specified in the walls.

Also, as an initial condition used in this transient problem, the microchannel is filled with
the primary phase, which is in this case water represented by white colour.

In order to deal with the interaction between the two immiscible fluids described in the
previous section, some parameter that identifies the shear forces acting on the interface needs to
be defined. According to Coelho et al. (2016) and Santos et al. (2016), the interfacial tension is an
important property that contributes to the form adopted by the droplets through the interface.
In many cases, the convergence of the solution depends on its value. In addition, several other
parameters such as viscosities and velocities of both fluids, channels width, numerical parameters,
can influence the droplets formation and convergence of the solution process. Their influence
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Fig. 2. Boundary conditions at the Y-junction geometry used in this work

in the fluid flow can be better understood using dimensionless numbers, as represented by Eqs.
(3.7) to (3.15), the following:
(i) The capillary number Ca reflects the ratio between the viscous forces and the capillary

forces. The first term depends on the viscosity of the dispersed fluid, in this case oil µo which is
injected with an average velocity Vo, and the second term is the interfacial tension between the
two fluids σwo

Ca =
µoVo
σwo

(3.7)

(ii) The comparison between the more viscous fluid, oil µo, and less viscous fluid, water µw,
is represented by the dimensionless viscosity ratio µR defined by

µR =
µo
µw

(3.8)

(iii) The Reynolds number Re represents the relationship between the inertia forces (repre-
sented by the group ρoVoh), with the viscous forces of the dispersed fluid, which is oil. The
expression is

Re =
ρoVoh

µo
(3.9)

where h is the characteristic length chosen to represent the flow, which is in this case the width
of the channel through which oil flows. In all simulations performed in this study, the Reynolds
number is relatively small (Re ¬ 1) meaning that the inertial forces are almost insignificant
when compared with the viscous forces.
(iv) The way in which droplets are formed throughout the main channel is strongly influenced

by the contact angle θc of the fluids that are in contact with the walls. Thus, the wettability (or
contact angle) indicates which phase is preferably wet to the walls. According to Jamaloei et
al. (2011), a contact angle equal to zero θc = 0 indicates complete wetting of the denser phase
(water), θc = π rad indicates complete wetting of the less dense phase (oil) and an angle of
θc = π/2 rad indicates that neither of the phases wet preferably than the other. In this study,
the contact angle is θc = 0 rad.
(v) The flow rates of oil and water are respectively noted qo and qw, and the ratio between

them is described by

qR =
qo
qw

(3.10)
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(vi) According to Garstecki et al. (2006), the length l of the droplets (Fig. 1a) depends on the
flow rate ratio between the two fluids qR, the width h of the main channel and the constant α
depending on the geometry used

l

h
= 1 + αqR (3.11)

(vii) Based on Coelho et al. (2016) and Santos et al. (2016), one of the main parameters
described in the literature to obtain the convergence of the solution with the explicit approach
to time-dependent problems is the Courant number, defined by

CO =
Vm∆t

∆x
(3.12)

where Vm is the average velocity of the dispersed fluid (Vm = Vo), ∆x is the size of a represen-
tative element of the mesh and ∆t is the time-step size. Equation (3.13) which is derived from
Eq. (3.12), is known as Courant-Friedrichs-Lewy (CFL)

∆tCFL =
Co∆x

Vm
(3.13)

the Courant number should be less than 1 (Co < 1) to assure the convergence of iterative
solution (Bethke, 2008).
In order to highlight the effects of interfacial tension and viscosities, other equations to

determine the time step are presented. One of them is the relation proposed by Brackbill et al.
(1992) which establishes the time step as a function depending on the mass density of oil and
the interfacial tension

∆tB =

√

ρo∆x3

2πσwo
(3.14)

another example is the equation proposed by Galusinski and Vigneaux (2008), where the time
step ∆tV is depending on the viscosity of oil and the interfacial tension

∆tV =
µo∆x

σwo
(3.15)

4. Numerical solution of the governing equations

To solve numerically the set of governing equations, Eqs. (3.1), (3.4) and (3.5), it is necessary
to discretize it in order to obtain a system of algebraic equations (Patankar, 1980).

4.1. Discretization algorithms

The discrete version of governing equations is solved using the commercial software Ansys
Fluent 15.0 with the VOF technique. In this process, one of the key steps is the treatment of the
pressure field. In fact, gradients in the pressure appear in the Navier-Stokes equations. However,
since we are using an incompressible fluid, the density of each fluid is constant, thus the pressure
can not be calculated directly from the equation of state. An alternative way to determine the
pressure field is to couple the pressure and the velocity. Three pressure-velocity coupling schemes
are available in Fluent: SIMPLE (Semi-Implicit Method for Pressure-Linked Equations); SIM-
PLEC (SIMPLE Consistent) is an improved version of SIMPLE, and PISO (Pressure Implicit
with Splitting of Operators) is using a similar method as SIMPLE and SIMPLEC with a better
correction. All three algorithms are used for the pressure-velocity coupling. For more details see
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Ferziger and Peric (2002) and Versteeg and Malalasekera (1998). Their effects in the flow field
behaviour will be presented and discussed in the results Section.

The PRESTO schemes (Pressure Staggering Option) and Second Order Upwind are used
respectively for the interpolation of pressure and velocity. For the evaluation of gradients, the
Least Squares Cell based method is used. It is quite accurate and computationally less expensive
compared to other methods.

The Geometric Reconstruction (Geo-Reconstruct) method, used for oil and water volumetric
fractions, allows good definition of the liquid-liquid interface of the Y-junction since it uses a
linear approach to represent the interface between the fluids.

4.2. Mesh test

For the spatial discretization of the domain, three different meshes have been tested, as
is shown in Fig. 3 (left) where the maximum size of the rectangular elements is gradually
decreased, which means a refined mesh. The first one (Fig. 3a) is the coarsest mesh, containing
1106 rectangular elements and referred as mesh 1. In Fig. 3b, corresponding to the regular mesh
contains 4423 rectangular elements. The size of the elements for this mesh is in the range between
0.001mm and 0.01mm. Reducing again the size of the rectangular elements leads to the most
refined mesh among them (Fig. 3c). This mesh contains 8838 elements. The parameters for each
mesh is detailed in Table 1.

Fig. 3. Mesh (left) and water volume fraction (right) for 3 meshes tested at 13.8 s: (a) coarse mesh,
(b) regular mesh, and (c) refined mesh

Table 1. Parameters of the three meshes

Parameters Mesh 1 Mesh 2 Mesh 3

Number of elements 1106 4423 8838

Minimum size [mm] 0.001 0.001 0.001

Maximum size [mm] 0.02 0.01 0.007
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Simulation has been performed for each mesh, with the same boundary conditions. The
results are shown in Fig. 3. In the right side of this figure, it can be seen that droplets with
similar regularity and shape are obtained for all three meshes. However, the position where the
droplet is formed is different from one mesh to another. The way in which droplets are being
formed will be explained in the next Section.

In order to choose a better mesh, a comparison between the predicted length of the droplet
and the ones obtained for meshes 1 and 2 has been made. For qR = 0.2158 and h = 0.1mm,
the length of the droplets obtained from Garstecki equation, Eq. (3.12), with α = 6.5 is
lTeo = l = 0.24mm. For the three meshes, the length of the droplet obtained numerically lNum
is shown in Fig. 4. The relative error is defined as εR = 100|lNum − lTeo|/lTeo. After calcula-
tions εRMesh 1 = 8.33%, εRMesh 2 = 4.17% and εRMesh 3 = 12.50%. The relative errors are smaller
for Mesh 2. From these results, it is clear that the regular mesh is the most suitable for this
geometry, compared to the others. It will be used in the next simulations.

Fig. 4. (a) Length of the generated droplet lNum for each mesh; and (b) comparison between length of
the droplet obtained by numerical approach lNum with analytical equation lNum

Although mesh comparisons reported in Fig. 4a is apparently not converging to a constant
solution, our main criterion to select the mesh number 2 is the best representation of the ana-
lytical equation, Eq. (3.11). The scaling relation proposed by Garstecki et al. (2006), obtained
by experiments, is commonly applied and used as a reference in the literature. This procedure
is adopted because refined mesh were tested, increasing considerable the time computing re-
quired to obtain solutions which are not completely converging to a constant droplet length.
The comment of Qian and Lawal (2006) “...All these complexities make VOF multiphase flow
simulation computationally expensive, and convergence difficult to achieve when compared to
its single phase counterpart. In fact, multiphase flow is perhaps the most difficult topic in the
CFD simulation...”, it is appropriate at this time.

4.3. Selection of the time-step

In this transient problem, the simulation time tn is determined from the previous time tn−1
by the equation tn = tn−1+∆t. The advance in time is repeated until tn = tfinal , which represents
the end of the simulation when n = N , where N is the number of time-steps. The choice of the
time-step ∆t is extremely important for problems with liquid-liquid interfaces. To assure the
convergence of the solution, the Courant number should be less than one where fluid particles
move from one cell to another within one time step. If it is higher than one, fluid particles
move through two or more cells at each time step and this can affect convergence negatively.
For Co = 0.2, ∆x = 10−5m, σwo = 0.0003 N/m, Vo = 0.00009m/s, ρo = 900 kg/m

3 and
µo = 10 cP = 0.01 Pa·s, the values for the time step obtained by Eqs. (3.13), (3.14) and (3.15)
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are ∆tCFL = 0.002 s, ∆tB = 2.185 · 10
−5 s and ∆tV = 3.33 · 10

−4 s. In simulations performed
in this study, it has been used N = 6900 time steps of ∆t = 0.002 s, therefore the end of the
simulation is at tfinal = 13.8 s.
The nine cases analysed with the values of the dimensionless parameters and the algorithms

used are detailed in Table 2. The Reynolds number is Re = 8.1 ·10−4 for all the simulated cases.

Table 2. Parameters used in nine simulated cases

Case Algorithm
Ca µr qR Geometry

Eq. (3.7) Eq. (3.8) Eq. (3.10)

1 SIMPLE 0.003 10 0.2158 Fig. 1a

2 SIMPLE 0.00474 10 0.2158 Fig. 1a

3 SIMPLE 0.01 10 0.2158 Fig. 1a

4 SIMPLE 0.003 10 0.168 Fig. 1a

5 SIMPLE 0.003 10 0.3 Fig. 1a

6 SIMPLE 0.003 1 0.2158 Fig. 1a

7 SIMPLEC 0.003 10 0.2158 Fig. 1a

8 PISO 0.003 10 0.2158 Fig. 1a

9 SIMPLE 0.003 10 0.2158 Fig. 1b

For a simulation of 13.8 s (6900 time steps), each case takes approximately 56 minutes using
a computer ASUS Intel R○ CoreTM i3-4005U CPU@1.7GHz and 4GB of RAM.
The convergence criteria is chosen to be 10−3 for the residual monitors. For this value, the

convergence happens after 9 iterations on average.

5. Results and discussions

The results for all nine cases in Table 2 are explained in the following sections. For Subsections
5.1, 5.2 and 5.3, the physical domain used is defined by Fig. 1a and for Subsections 5.4, the one
defined by Fig. 1b is used.

5.1. Microdroplet formation process

Figure 5 shows the time evolution of the droplet formation in the Y-junction for case 1.
Initially, all the geometry is filled with water (white colour). From this moment, oil represented
by black colour is injected into channel number 1 (according to notations in Fig. 1) with a
constant velocity of 0.00009m/s. In the meantime, water is continuously injected into channel 2
(according to notations in Fig. 1) with a constant velocity of 0.000417 m/s. The formation
of droplets can be described as follows. The two immiscible fluids form an interface at the
junction (Fig. 5a). The droplet begins to grow due to action of shear stress between the carrier
and dispersed phases. Thus the neck width of the droplet becomes smaller until the droplet
completely separates from the dispersed phase (Fig. 5b and Fig. 5c) forming two interfaces. At
the broken time and due to capillary effects, these two interfaces displace in opposite directions
at high velocities. One of the interface, which is always moving forward, forms the downstream
meniscus of the droplet recently created. The other interface is moving backward (Fig. 5c) and
because the fluid injection is constant, this negative velocity becomes zero and then positive.
This process repeats itself periodically and a pattern of a droplet is formed in the main channel
(Fig. 5d). The droplets areas equally spaced, have the same length and diameter larger than the
main channel. These characteristics depend on the interfacial tension, viscosity ratio and flow
rate ratio between the two fluids, besides of the geometry used. In this frame, it is also possible
to observe the zero contact angle between the system oil/water/wall.
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Fig. 5. Time evolution of droplet formation at Ca = 3 · 10−3 and qR = 0.216 at different time instants:
(a) 6 s, (b) 6.5 s, (c) 7 s, and (d) 12.8 s

The coherence of the previous results can also be explained by variation of pressure through
the geometry. The contour of pressure is shown in Fig. 6 for four different time instants: 6 s,
6.5 s, 7 s and 12.8 s which are also the same times used in Fig. 5.

Fig. 6. Contour of pressure (in Pa) for the Y-junction at Ca = 3 · 10−3 and qR = 0.216 at different
instants: (a) 6 s, (b) 6.5 s, (c) 7 s and (d) 12.8 s

Figure 6a represents the contour of pressure at 6s after the injection of the fluids, which is
when the interface arrives to the junction. Because oil (channel 1) is ten times more viscous
than water (channel 2), the pressure necessary to facilitate its movement through the channel is
increasing, the pressure in the outlet is almost equal to zero, as set in the boundary conditions.
When the dispersed fluid (oil) reaches the junction, the pressure drives a part of that fluid into
the main channel and blocks the rest of the dispersed fluid from channel 1, as shown in Fig. 6b.
Thus, as the carrier fluid (water) is moving through the secondary channel, a complete droplet
is being formed. In Fig. 6c, the upstream pressure decreases once the droplet separates from the
junction. This instantaneous drop in pressure happens because the blockage of the dispersed
fluid stops and the second droplet starts forming. This formation process repeats periodically
as both fluids are continuously injected. Figure 6d represents the contour of pressure when the
first droplet reaches the outlet causing a small increase in the outlet pressure.

For this case, the contour of pressure is illustrated by a diagram in Fig. 7. The peaks in this
figure represent the positions of droplets in the current instant (t = 13.8 s) when they move along
the main channel whose length is 0.0036m (36h, with h = 0.1mm). One droplet is situated in
a position x = 0.0015m from the junction, almost half length of the channel, and another is at
x = 0.0027m, close to the exit plane. The first droplet reaches the outlet, its pressure is equal
to zero. In Fig. 7, it can be seen that the pressure in the droplet is as high as the droplet is close
to the junction. This is due to the blockage exerted by the pressure, which has been explained
previously.
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Fig. 7. Evolution of pressure in the main channel at the time instant 13.8 s

5.2. Dimensionless numbers effect

5.2.1. Capillary number

The way in which droplets are formed is highly influenced by the capillary number. Simu-
lations have been performed for three different values of the capillary number: cases 1, 2 and 3
(refer to Table 1).

For case 1, with Ca = 0.003 the droplets or droplets generation occurs at the two-phase
intersection and they have an elongated shape in the continuous phase microchannel. This
regime is called “Squeezing regime” Tarchichi et al. (2013) (Fig. 8a). When Ca is increased, the
droplets generated do not occupy the entire width of the continuous phase microchannel at the
junction and they are smaller than the width of the continuous phase channel (Fig. 8b). This
regime of droplet formation is known as “Dripping regime” (Tarchichi et al., 2013). In case 3,
where Ca is increased again, the dispersed phase forms a long neck in the main channel (Fig. 8c).
In this regime named “Jetting regime” (Tarchichi et al., 2013), the droplet or droplet formation
occurs downstream at a some distance from the junction.

Fig. 8. Position of droplet breakup for three regimes: (a) squeezing at Ca = 0.003, (b) dripping
at Ca = 0.00474 and (c) jetting at Ca = 0.01

5.2.2. Flow rate ratio

Here we investigate the influence of the flow rate ratio (qR = qo/qw) when the capillary
number and the viscosity ratio are constant. Three different flow rate ratios are used: qR = 0.168,
qR = 0.2158 and qR = 0.3 corresponding respectively to cases 1, 4 and 5, respectively. Figure 9
shows length of the droplet generated for each flow rate ratio. When q is small (case 4), the
droplets are pinched off at the junction. The length of the droplets in this case is l = 0.23mm.
However when q = 0.2158, the detachment point moves from the corner downstream (Fig. 9b).
In this case, the droplets have a size equal to 0.25mm. When q = 0.3, the length of the droplet
is l = 0.26mm.



Numerical study of droplet formation in a Y-junction microchannel 327

Fig. 9. Droplet length for the three flow rate ratios: (a) qR = 0.17, (b) qR = 0.2158 and (c) qR = 0.3

The results obtained confirm Eq. (3.11) which relates the size of the droplet with the flow
rate ratio.

5.2.3. Viscosity ratio

Here we investigate the role of the viscosity ratio (µR = µo/µw) defined by Eq. (3.8) in
the droplet formation process. The flow rate ratio and the capillary number are kept constant.
Figure 10 shows the droplet formation for µR = 10 and µR = 1, respectively, at the same instant
t = 12.8 s. With a small viscosity ratio, the droplet formation occurs in the junction, which does
not happen with a viscosity ratio equal to 10. Also, it can be seen in Fig. 10 that the decreasing
viscosity ratio leads to smaller droplets with higher frequency. At the same instant, three droplets
are formed for µR = 10, where we have four droplets for µR = 1. In fact, the breakup of the
droplet is controlled by competition between viscous shear force and capillary force; which means
when Ca is constant, the viscosity becomes a key factor in the droplet formation. That is why
smaller droplets are obtained when µR = 1.

Fig. 10. Water volume fraction for two different viscosity ratios: (a) µR = 10 and (b) µR = 1

5.3. Influence of discretization algorithms

In this part, we investigate the effect of pressure-velocity schemes. Periodic droplets with a
similar shape are obtained for all three algorithms (Fig. 11a, 11b and 11c). In this figure, it can
be seen that the position of the droplet is little different from an algorithm to another. In fact,

Fig. 11. Oil volume fraction for three algorithms: (a) SIMPLE, (b) SIMPLEC, and (c) PISO at the time
instant 12.8 s; (d) position of the center of gravity of the first inlet
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the difference between these algorithms lies in the pressure correction and the convergence speed,
as has been mentioned in Section “Discretization algorithms”. To have a better understanding of
their effects, the time evolution of pressure is compared in each case. The pressure is measured at
the same location (point G) which is the centre of gravity of channel 2 (Fig. 11d). This position is
chosen because of the results in the contour of pressure shown in Fig. 6 and already commented.
Indeed, the pressure in channel 2 varies periodically during the formation of a droplet. Thus, it
would be easier to compare the effect of these algorithms in that position.
Figure 12 represents the time evolution of the pressure at the pointG for the three algorithms.

In this figure, at the beginning, SIMPLE and SIMPLEC are more stable than PISO. However,
from the third droplet (t = 9.5 s; N = 4750 time steps), PISO becomes more stable and accurate
compared to the other algorithms, the oscillations amplitude in PISO is smaller than in the
others. In fact, PISO is more recommended for simulation with large time steps, as has been
mentioned in Section “Discretization algorithms”. The results for SIMPLE and SIMPLEC are
quite similar during the simulation. In fact, differences between the methods arise more from
the single-phase flow. Also, the number of iterations for each time step is quite smaller in PISO
than in the other algorithms. This leads to a faster simulation. All the results confirm that the
algorithm PISO is better for a two-phase flow like that considered in our case.

Fig. 12. Time evolution of pressure at the point G (Fig. 11d) for the three algorithms SIMPLE,
SIMPLEC and PISO

5.4. Microdroplet breakup process

In this part, the geometry described in Fig. 1a is modified by placing two orthogonal chan-
nels at the outlet, thereby forming another Y-junction but with length 10h each. A theoretical
mathematical point with zero radius of curvature represents the intersection between the two
walls of the channels. The objective is to capture the breakup process of droplets formed in the
first stage. Figure 13 represents the time evolution of the droplet breakup. When the droplet
arrives at the junction, it is deformed symmetrically by the driving fluid (water in this case)
in the center of the junction (Fig. 13a). Thus, the actions of the shear force and pressure drive
the droplet to each outlet, thereby forming two half-droplets connected by the neck (Fig. 13b).
From this moment, the neck becomes smaller until the breakup occurs (Fig. 13c). This process
repeats itself when the droplet reaches the junction (Fig. 13d).
Figure 14 shows details of the breakup process with the velocity vectors in the junction.

The uniform repartition of the velocity vectors in the two exit branches leads the droplet to
form two identical liquid fingers in the upper and lower branch (Fig. 14a and Fig. 14b). When
the droplet completely penetrates the branches, the droplet creates restriction to the fluid flow,
being necessary a higher pressure to sustain the motion. Thus, a neck is formed at the junction,
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Fig. 13. Droplet breakup in the Y-exit

Fig. 14. Velocity fields during the droplet breakup

as it can be seen in Fig. 14c. As the droplet moves through the exit channels, the neck becames
gradually smaller until the droplet breaks into two daughter ones. Once the breakup occurs, the
restriction stops, thus the flow restarts normally and the two half-droplets are driven to in the
outlets (Fig. 14d).

6. Conclusions

In the study, we investigate the formation process of droplets using geometry called Y-junction.
The capillary number, the flow rate ratio and the viscosity ratio are found to be important
in droplet formation, and these parameters together control the complex droplet generation
process. Our results are in phase with what can be found in the literature. The analysis of
pressure field shows that the pressure plays a major role in droplet formations.

The predicted length of droplets, as described by Tarchichi et al. (2013) and Garstecki et al.
(2006) for the squeezing regime, is confirmed through simulations performed in this work, since
the analytical and numerical values are almost the same.

The results of the simulations reveal that the algorithm PISO is the most suitable for a two
phase flow problem, at least in the range of parameters considered in this work. SIMPLE and
SIMPLEC do not show any particular difference in the results, due to the regime of the flows.
However, the results for SIMPLE and SIMPLEC are also satisfactory.

The process of breaking the bubbles using a second Y-junction in the end shows a symmetric
distribution of the droplets in the two outlet channels. The droplets divide into parts of equal size
due to the same conditions in the two outlets (0 Pa). The dimensionless numbers also can affect
the breakup process. In fact, a high value of the capillary number can lead to an asymmetric
distribution.
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